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The Chemistry of Deformation:

How Solutes Soften Pure Metals
Dallas R. Trinkle* and Christopher Woodward

Solutes have been added to strengthen elemental metals, generating usable mate-
rials for millennia; in the 1960s, solutes were found to also soften metals. Despite
the empirical correlation between the ‘‘electron number’’ of the solute and the
change in strength of the material to which it is added, the mechanism re-
sponsible for softening is poorly understood. Using state-of-the-art quantum-
mechanical methods, we studied the direct interaction of transition-metal solutes
with dislocations in molybdenum. The interaction increases dramatically with in-
creasing electron number and strongly influences the mechanisms responsible
for plasticity in these materials. Our quantitative model explains solution soft-
ening of metals by using changes in energy and stress scales of plasticity from
solutes.

Solutes have played a key role in produc-

ing useful materials from pure metals over

the past millennia, driving technological

advances in civilization—from the Bronze

Age to the Iron Age to the industrial rev-

olution. For most of human history, al-

loying was used to increase the strength

of metals (1). Four decades ago, a wealth

of evidence showed that for some body-

centered cubic (bcc) metals, solutes could

decrease material strength (2). This effect,

known as solid-solution softening, was ob-

served as a reduction in the stress at which

a material begins to deform irreversibly (yield

stress) or as a reduction in the material_s

ability to resist indentation (hardness). Soft-

ening is important for producing viable

materials: The bcc refractory metals (Nb,

W, Ta, and Mo) offer a possible new class

of high-temperature materials for compo-

nents used in turbine engines or nuclear

power plants, but the metals have poor

low-temperature behavior in elemental form.

As the temperature decreases from 15% of

the melting temperature (above room tem-

perature for refractory metals) down to

absolute zero, strength increases rapidly.

This high strength is undesirable, because it

is linked with an increase in fracture and

low malleability, ultimately limiting the use

of these materials as critical structural com-

ponents. A classical metallurgical practice

is to reduce this risk by incorporating

solid-solutions or by introducing new soft-

er phases. Models have only succeeded in

qualitatively explaining the possibility of

low-temperature softening (3–5) or in find-

ing empirical correlations to deduce scaling

trends (6). Moving beyond these empirical

techniques requires a combination of chem-

istry, materials physics, and large-scale

computation to investigate how solute chem-

istry changes deformation: the Bchemistry of

deformation.[

Irreversible plastic deformation of met-

als is controlled by dislocation defects, and

solute-induced softening is controlled by

interactions of solutes and dislocations. Dis-

locations are topological line defects that

move at stresses below the stress required

to irreversibly deform a dislocation-free

crystal (7). In bcc metals, low-temperature

plastic deformation is controlled by moving

straight screw-character dislocations. A

dislocation line moves perpendicular to its

length by nucleating a pair of opposite-

directed Bkinks.[ These migrate away from

each other along the dislocation, moving

the dislocation line forward to the next

lattice site like the locomotion of a snake.

Solute chemistry affects double-kink nucle-

ation and kink migration to produce both

softening and hardening.

Our model explains the following ex-

perimental data for a Mo-Re alloy, which is

the classic solid-solution softening system.

Below a temperature of 350 K, Mo-Re is

softer than pure Mo for small Re concen-

trations (8). Softening continues up to 16

atomic %, where the alloy becomes harder

than pure Mo. The maximum softening oc-

curs at 8 atomic % at 77 K, and the max-

imum softening concentration decreases as

temperature is increased (9). Thus, a given

solute concentration can soften an alloy at

one temperature and harden at another; and

at a given temperature, increasing solute con-

centration can first soften and then harden

the alloy at higher concentrations. Similar

features appear for other 5d-row solutes

with higher d electron numbers (Os, Ir, Pt),

but the maximum softening occurs at much

smaller concentrations. Metals with lower d

electron numbers (Hf, Ta) harden for all

concentrations and temperatures. The goal

of alloy design for Mo alloys is to soften

the low-temperature behavior, reducing the

risk of fracture.

We show here that the prediction of strength

with changing alloy concentration and tem-

perature for Mo alloys requires calculation

of the direct solute-dislocation interaction

and modeling of those effects on plastic-

ity. State-of-the-art quantum-mechanical

electronic structure methods (10–13) with

special dislocation boundary conditions (14)

calculate the interaction energy between a

single straight dislocation and a solute

and the change in the resistance to the mo-

tion of the dislocation. These data enter a

solid-solution softening model of plasticity

by changing energy and stress scales of

double-kink nucleation and kink-migration

enthalpy barriers. The effect of random clus-

tering (where more than one solute atom

interacts with a kink) is crucial in mod-

eling changes in kink migration above the

dilute limit. Also, the bonding environ-

ment near a dislocation is distinct from the

bulk, producing the unique chemistry of

deformation. Our model quantitatively pre-

dicts strength measurements of Mo-Re and

matches hardness measurements of Mo-Pt,

two systems with dramatically different soft-

ening and hardening behavior. The details

of the computational methods are included

in (15).

As a starting point, Fig. 1 compares the

nearest-neighbor geometry of bulk bcc Mo

to that of a 1/2E111^ screw-character

dislocation. Viewed along the E111^ direc-

tion, the bulk cubic structure forms a tri-

angular lattice of atomic rows; the triangles

can be viewed as spirals of alternating chi-

rality. To form a dislocation, the chirality

of a triangle is changed by displacing each

row in the triangle by different amounts
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along the E111^ direction (out of the page).

The change of one triangle affects its neigh-

bors, with local displacements dying off as

the inverse distance from the dislocation cen-

ter. Although this geometry maintains the

nearest-neighbor coordination of a bcc lat-

tice throughout, the bond states near the dis-

location are distinctly different from those

in bulk Mo.

Our solid-solution model is based on

thermally activated motion of dislocations

by double-kink nucleation and kink migra-

tion (3, 4, 15–17). Double-kink nucleation

is the rate-limiting process at low temper-

atures, and kink migration is rate-limiting

at higher temperatures. Stress s (resisting

force per area) is measured against applied

strain e (elongation) at a constant strain

rate ė. The Orowan equation (18) connects

ė to the motion of dislocations at yield

ė 0 brmndislðsÞ, where b is the Burgers vector

length, r
m
is the mobile dislocation density

per area, and ndisl is the average dislocation

velocity with stress. The average disloca-

tion velocity is the distance a dislocation

moves because of a kink (by geometry,

0.94b) divided by the average time to make

stable double kinks and migrate the entire

dislocation. Thus,

ė 0 0:94b2rm

� ðnucleation rateÞj1 þ ðmigration rateÞj1
h i

j1

where the rates are thermal activation rates,

(attempt frequency) � expEj(enthalpy barrier)/

(k
B
T )^, where k

B
is Boltzmann_s constant

and T is temperature, and the enthalpy

barriers decrease with stress. This equation

is solved numerically for the yield stress at a

given strain rate, temperature, and solute

content. The enthalpy barriers have an en-

ergy and a stress scale, and solutes affect

both scales.

The stress scales are connected to the

Peierls stress, which is the critical applied

stress where a dislocation moves, producing

plastic deformation and relieving stress.

The Peierls stress of pure Mo at 0 K has

been previously calculated by applying a

stress and monitoring the motion of atom-

ic rows of the dislocation (14). A screw-

character dislocation moves to the right

(i.e., the E112^ direction) by displacing

atomic rows along E111^ to change chirality

(Fig. 1). The atomic row at the bottom right

of the core upward-pointing triangle moves

out of the page by 1/6E111^ to change its

spiral from counter-clockwise (CCW) back

to clockwise (CW), and the remaining two

rows of the new core upward-pointing

triangle to the right change chirality from

CW to CCW. Thus, the Peierls stress is

correlated to the stiffness for moving a sin-

gle atomic row in the dislocation core, and

changes in this stiffness from solutes change

the stress scale in the enthalpy barriers in our

solid-solution model.

Different solutes change the energy to

displace an atomic row in the core of a

1/2E111^ screw-character dislocation (Fig.

2). Solutes having lower d electron numbers

(Hf and Ta) increase the stiffness (the

curvature at zero displacement, table S1)

(15), which we infer strengthens the Mo

alloy, whereas those having higher d elec-

tron numbers (Re, Os, and Ir) decrease the

stiffness, leading to softening. The excep-

tion to this trend is Pt, which shows a

small change in stiffness relative to pure

Mo. However, Mo-Pt is known experimen-

tally to be softer than pure Mo for small Pt

concentrations. The inability of the change

in stiffness (which we define as the Peierls

misfit) to explain softening implies an

additional solute-dislocation interaction is

responsible.

The energy scales are connected to the

direct solute-dislocation core interaction

(Fig. 3). The energy profile is defined

relative to a widely separated dislocation-

solute pair, and E
int

is defined as the max-

imum interaction energy (table S2 shows

all solutes) (15). Re shows a weak, short-

range interaction, but it has a larger Peierls

misfit than does Pt. The weaker interaction

and larger Peierls misfit of Re produces a

small softening effect; but these effects

increase at high concentrations, where mul-

tiple solutes interact with the dislocation. The

large attractive interaction of Pt produces a

substantial change in the energy scale and

strong initial softening, but leads quickly to

hardening at higher concentrations.

Solutes modify double-kink nucleation

by changing the nucleation barrier along

Fig. 1. Atomic nearest-
neighbor geometry of a
bcc 1/2[111] screw-
character dislocation in
Mo extending out of the
page (right) compared
with bulk bcc Mo (left).
A bcc crystal can be
viewed as atomic rows
coming out of the page
arranged in a triangular
lattice. The upward-
pointing triangles of
three atomic rows spi-
ral out of the page
with clockwise chirality
(CW arrow) and with
counter-clockwise chi-
rality (CCW arrow) for
downward-pointing tri-
angles. CW spirals must
share edges with CCW
spirals and vice versa.
A screw-character dis-

location is formed by changing chirality of one upward-pointing triangle. The three neighboring,
downward-pointing triangle spirals flatten in the plane, removing any chirality (marked as open circles).
These changes come from displacements of atomic rows out of the page. The four highly modified
triangles form the ‘‘core’’ of the dislocation. The remaining triangles keep their initial chirality, becoming
more bulklike further from the core. This figure was produced using ATOMEYE (19).

Fig. 2. The change in energy from
displacement of an atomic row in the
core of a Mo dislocation for different
solutes substituted into that row. The
inset dislocation core schematic identi-
fies the displaced row in gray. The solid
circles indicate the energy for a row of
pure Mo; the remaining curves give the
energy for a row in the core containing a
solute atom. Energies are relative to the
relaxed core with the respective solute.
The curvature at zero displacement is the
stiffness for moving a row in the disloca-
tion core; differences in stiffness change
the Peierls stress.
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the entire length of dislocation and by lo-

cally modifying the barrier at solute sites.

Solutes change the stiffness for dislocation

motion, producing a global change in the

stress scale for double-kink nucleation. Lo-

cally, an average c possible nucleation sites

are occupied by a solute, whereas (1 j c) are

not. The change in the nucleation energy

scale from the solute is the solute-dislocation

interaction energy E
int
. Attractive solute in-

teractions and negative Peierls misfits (Re,

Os, Ir, and Pt) increase nucleation of dou-

ble kinks and provide more favorable nu-

cleation sites, which leads to softening at

low temperatures.

The rate-limiting step in kink migration

is the time to overcome the largest solute

cluster on the dislocation line (16). The

size of the largest cluster encountered (as-

suming a random distribution of solutes) is

25
ffiffiffi

c
p

, where the prefactor depends weakly

on the dislocation density and kink width

(fig. S2) (15). This gives a cluster size of 1

solute for c 0 0.16 atomic %, and 8 solutes

for c 0 10 atomic %. Kinks in pure bcc met-

als are very mobile, so any solute inter-

action impedes the motion of kinks. Thus,

we write the solute barrier energy scale as

25
ffiffiffiffiffiffiffiffiffiffiffi

ckEint k
p

, slowing kink migration and pro-

ducing hardening at higher temperatures and

concentrations.

The predicted strength for Mo-Re and

Mo-Pt with changing solute concentration

for several temperatures compared with

experiment is shown in Fig. 4. The pre-

dicted value of flow stress and hardness for

pure Mo was fit to the experimental data

(figs. S1 and S3) (15). The attractive in-

teraction of Re leads to softening for low

solute concentrations because of increased

double-kink nucleation. As the concentra-

tion increases, there is a crossover to kink-

migration–limited flow stress, which hardens

with additional solute. The crossover hap-

pens at lower concentrations for higher tem-

peratures, because kink migration becomes

more important than double-kink nuclea-

tion at higher temperatures. Qualitatively,

the same softening behavior is seen for Pt

as for Re: softening initially for low con-

centrations and crossing over to hardening

at higher concentrations. The crossover con-

centration decreases with increasing tem-

perature. However, the concentration scales

differ by an order of magnitude. Even though

Mo-Re and Mo-Pt differ dramatically in

scale, a single model can capture the key

physics of both systems.

Our model for solid-solution softening

and the computation of interaction param-

eters requires careful treatment of the dis-

location geometry and chemistry, as well

as the statistics of clustering. The geometry

of the dislocation core creates a bonding

environment that is distinct from the bulk.

In fact, using classical bulk approximations

can produce erroneous results (hardening

versus softening) or mechanisms (interac-

tion energy versus Peierls misfit). Statis-

tical modeling of the solute distribution is

needed to produce the clustering effect im-

portant for the hardening of Mo-Re at high

solute concentrations. Without clustering,

the Re-dislocation interaction is too small

to produce hardening effects.

Our model and calculation of the inter-

action parameters explains the softening

and hardening of Mo by Re and Pt over a

range of concentrations and temperatures.

Direct solute-induced changes to energy

and stress scales of double-kink nucleation

and kink migration are sufficient, when

coupled with the correct interaction param-

eters, to quantitatively predict experimen-

tal observations. The calculation of the

interaction uncovers underlying electronic

effects that we are now able to access by

using current tools and computational re-

sources. Our approach connects ab initio

atomic-level interactions and mesoscopic

mechanical behavior to explain the chem-

istry of deformation. Such an approach can

also be applied to solute-induced softening

in other technologically important materials,

such as Fe and Nb.
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Fig. 3. Solute-dislocation
interaction-energy profile
for Re (left) and Pt (right)
in Mo. The contours are at
0.1-eV intervals, and the
interaction is attractive
for all sites. Each circle is
a possible lattice site for a
solute atom in an atomic
row; the dislocation is lo-
cated in the center of the
profile. The Pt dislocation
interaction is stronger and
has a longer range than Re. The interaction energy Eint is the maximum value in the profile.

Fig. 4. Predicted strength
for Mo-Re and Mo-Pt as a
function of solute concen-
tration for different tem-
peratures, compared with
experiments. (A) Flow
stress at 10% strain for
Mo-Re and experiments
(exp.) of (8). The flow
stress is scaled to the
shear modulus m 0 139
GPa. (B) Vickers hardness
number (VHN) for Mo-Pt
and experiments of (9).
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